
GTR/DBSE - accouplement rigide en torsion avec entretoise : caractéristiques techniques

	Taille	А	D	E H7 Max	E4 H7 Max	N	Р	U	V	L _{tot}
	0	78	45	32	25	29	7,5	10	M5	
	1	80	45	32	25	36	8	10	M5	
	2	92	53	38	30	42	8	10	M5	
	3	112	64	45	35	46	10	15	M8	
	4	136	76	52	45	56	12	15	M8	
	5	162	92	65	55	66	13	20	M8	2 N
<u>، [</u>	6	182	112	80	70	80	14	20	M8	+
. [7	206	128	90	80	92	15	20	M10	= D.B.S.E.
١L	8	226	133	95	80	100	22	20	M10	D.B.
. [9	252	155	110	-	110	25	25	M12	tot II
<u>۱</u> ا	10	296	170	120	-	120	32	25	M12	רַ "
. [11	318	195	138	1	140	32	30	M16	
۱ [12	352	218	155	-	155	34	40	M20	
. [13	386	252	175	-	175	37	40	M20	
<u>، [</u>	14	426	272	190	-	190	37	45	M24	
<u> [</u>	15	456	292	205	-	205	42	45	M24	

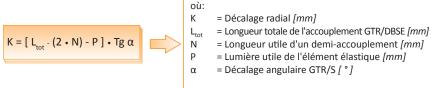
CARACTÉRISTIQUES TECHNIQUES

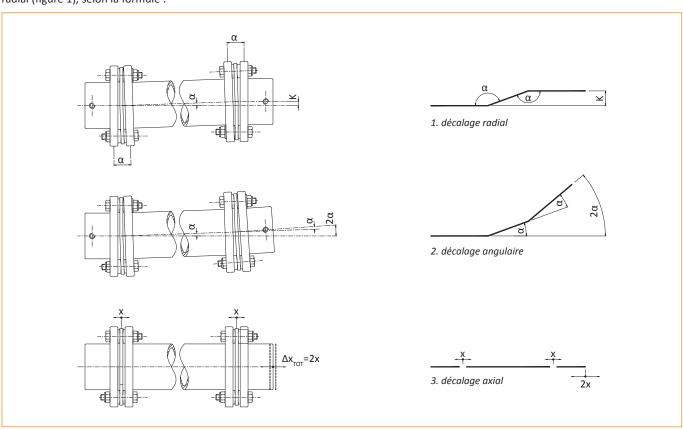
	Taille	Couple (Nm)			entretoise			Poids	Vitesse C	Charge	couple serrage vis		Décalages		
		Nom	Max	Mouvement alterné	Poids [Kg/m]	Inertie [Kgm²/m]	Rigidité relative R _T rel [10º Nm/rad•m]	tot [Kg/m]	max *2 [Rpm]	axiale	S 1	S2	Angulaire α[°]	Axial x [mm]	Radial
	0	60	120	20	5,0	0,00197	12	poids entretoise • (DBSE -	14500	10	10,5	12	1° 30′	1,40	K = (DBSE - P) • tg α
	1	100	200	33	5,0	0,00197	12		14200	14	10,5	12	1° 30′	1,60	
	2	150	300	50	5,5	0,00281	21		12500	19	17	13	1° 30′	1,90	
	3	300	600	100	5,5	0,00281	29		10200	26	43	22	1° 30′	2,50	
	4	700	1400	233	8,0	0,00582	60		8500	34	84	39	1° 30′	2,90	
L	5	1100	2200	366	13,5	0,01550	148		7000	53	145	85	1° 30′	3,30	
<u>۱</u>	6	1700	3400	566	16,0	0,02718	269		6300	70	145	95	1° 30′	4,00	
<u> </u>	7	2600	5200	866	16,5	0,03096	321	7 + pc 2P)	5500	79	360	127	1° 30′	4,50	
<u> </u>	8	4000	8000	1333	21,5	0,04907	640	,0]- 2	5000	104	-	260	1° 30′	4,90	
<u> </u>	9	7000	14000	2333	30,0	0,10648	1100	iTR/	4500	115	-	480	1° 30′	5,10	
<u> </u>	10	10000	20000	3333	38,0	0,15508	1610	poids <i>[GTR/D]</i>	3800	138	-	760	1° 30′	5,30	
<u> </u>	11	12000	24000	4000	44,0	0,23972	-		3600	279	-	780	1° 30′	5,90	
<u> </u>	12	25000	50000	8333	62,0	0,41522	-	H .	3200	484	-	800	1°	5,90	
<u> </u>	13	35000	70000	11666	67,0	0,53907	-	Poids tot	3000	638	-	1100	1°	6,30	
▲	14	50000	100000	16666	-	-	-	oid	2700	683	-	1500	1°	6,80	
<u>•</u> [15	65000	130000	21666	-	-	-	4	2500	744	-	2600	1°	7,70	

▲ Sur demande

NOTES |

• Vitesse max (*²) - Pour des vitesses supérieures, veuillez contacter notre service technique.

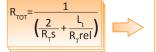

• Choix et disponibilité des différents types de fixation : voir pages 4 et 5.



GTR/DBSE - accouplement rigide en torsion avec entretoise : description détaillée

Le modèle à entretoise « GTR/DBSE » est non seulement indispensable pour raccorder des éléments de transmission éloignés les uns des autres, mais peut aussi (à la différence de classique modèle GTR/S) récupérer, selon les exigences, jusqu'au double du décalage angulaire (figure 2) et axial (figure 3), ou un fort décalage radial (figure 1), selon la formule :

L'erreur de positionnement à travers l'angle de torsion peut aussi être déterminée avec la formule :


$$\beta = \frac{180 \cdot C_{\text{mot}}}{\pi \cdot R_{\text{TOT}}}$$

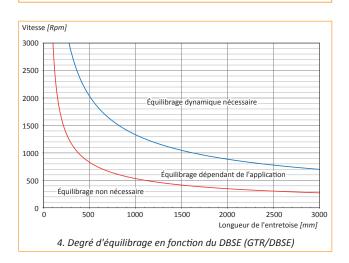
où: β = angle de torsion [°]

 C_{mot} = couple maximum côté moteur [Nm]

R_{TOT} = rigidité en torsion totale de l'accouplement [Nm/rad]

Dans le cas du TR/DBSE la rigidité en torsion totale de l'accouplement est exprimée par la formule :

R_{TOT} = rigidité en torsion de l'accouplement GTR/DBSE [Nm/rad] R_rs = rigidité en torsion de l'accouplement GTR/S [Nm/rad]


R_Trel = rigidité relative de l'entretoise [Nm/rad] L₁ = longueur de l'entretoise (=DBSE-2P) [m]

La vitesse maximale que peut atteindre l'accouplement est influencée par plusieurs facteurs :

- Vitesse périphérique de l'accouplement ;
- Poids de l'accouplement ;
- Longueur de l'entretoise ;
- Rigidité de l'accouplement ;
- Qualité de l'équilibrage.

En général, pour la plupart des applications nécessitant le modèle GTR/DBSE, un équilibrage dynamique N'EST PAS nécessaire ; dans d'autres cas, apprécier l'exigence selon le graphique 4 en fonction de la vitesse et de la longueur personnalisée de l'entretoise.

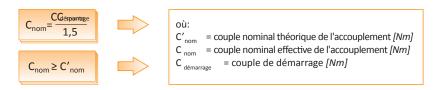
GTR et GTR/DBSE - accouplement rigide en torsion : description détaillée

DIMENSIONNEMENT

Pour la présélection de la taille de l'accouplement, on utilise la formule générique décrite en page 6. L'accouplement GTR supporte une couple de C.C. (court-circuit) de 2,5 fois le couple nominal.

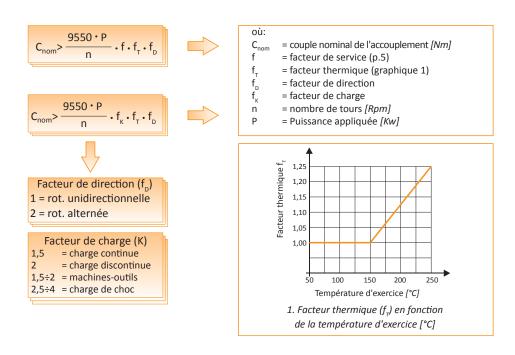
Si le C.C. est supérieur à 2,5 fois le couple nominal, il est conseillé de choisir l'accouplement selon la formule suivante :

$$C'_{nom} = \frac{C.C.}{2,5}$$

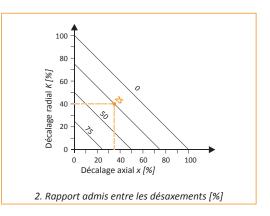

$$C'_{nom} = \frac{C.C.}{2,5}$$

$$C'_{nom} = \text{couple nominal th\'eorique de l'accouplement } [Nm]$$

$$C_{nom} = \text{couple nominal effectif de l'accouplement } [Nm]$$


$$C.C. = \text{couple de court-circuit } [Nm]$$

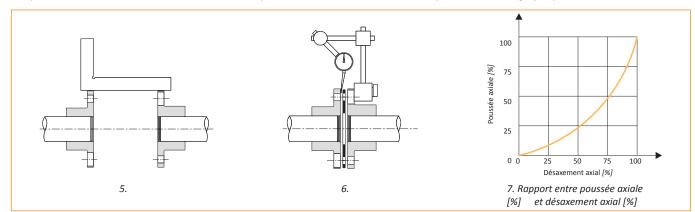
Le couple nominal indiqué au catalogue de l'accouplement GTR se réfère aux couples de démarrage inférieurs à 2 fois le couple nominal, avec facteur de service f=1.5. Par contre, si le couple de démarrage du moteur dépasse de 2 fois le couple nominal, la formule suivant peut être utilisée :


Après avoir calculé le couple nominal théorique (C'nom), à savoir celui que devrait effectivement avoir l'accouplement pour être correctement dimensionné, il faut comparer les caractéristiques techniques effectives des GTR (p.8-9) et choisir la taille qui permette de transmettre un couple nominal effectif (Cnom) supérieur ou égal à celui donné par la formule précédemment décrite.

Une fois la taille du joint à utiliser ainsi établie, d'autres vérifications peuvent être effectuées en prenant en compte d'autres paramètres :

Le choix de l'accouplement terminé et vérifié en fonction du couple à transmettre, il convient alors de prendre en compte la flexibilité nécessaire en comparant les décalages admis par le type d'accouplement choisi aux décalages réels, prévus par les arbres à raccorder.

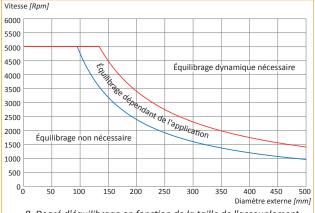
Il faut tenir compte du fait que les désaxements axial et radial doivent être considérés combinés les uns aux autres, puisqu'ils sont inversement proportionnels (l'un se réduit lorsque l'autre augmente). Si tous les types de décalages se présentent en même temps, il est nécessaire que la somme en pourcentage par rapport à la valeur maximale ne dépasse pas 100 % (graphique 2).



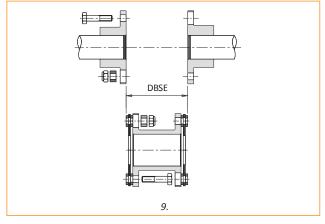
GTR et GTR/DBSE - accouplement rigide en torsion : description détaillée

Les puissances nominales indiquées au catalogue se réfèrent à une utilisation normale sans chocs et avec des arbres bien alignés à température ambiante -20 °C +250 °C. La valeur de poussée axiale (±20%) est liée au déplacement axial (graphique 7).

La vitesse maximale que peut atteindre l'accouplement est influencée par plusieurs facteurs :


- Vitesse périphérique de l'accouplement ;
- Poids de l'accouplement;
- Longueur de l'entretoise (page 12-14)
- Rigidité de l'accouplement ;
- Qualité de l'équilibrage.

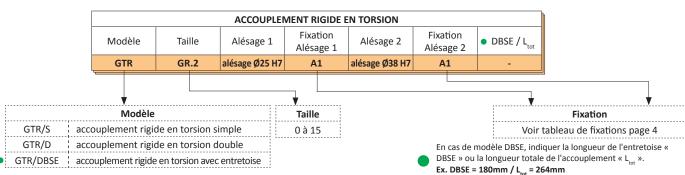
En général, pour la plupart des applications, un équilibrage dynamique N'EST PAS nécessaire ; dans d'autres cas, avec utilisation du modèle GTR/DBSE en apprécier la nécessité selon le graphique 8.


MONTAGE

- 1) effectuer un alignement radial et axial le plus précis possible, pour avoir une absorption maximale d'éventuels décalages et la durée maximale de l'accouplement (figure 5 et 6).
- 2) s'assurer que les arbres sont montés de façon à ce que leur extrémité soit sur le même plan que la surface du demi-accouplement (la longueur de l'éventuel de l'éventuel espaceur comprenant les deux séries de lamelles devra être égale à la distance entre les deux arbres) (figure 9).
- 3) Visser les vis de serrage avec une clé dynamométrique, une après l'autre, selon une séquence de type croisée, progressivement, jusqu'à obtenir le couple de serrage indiqué dans le catalogue (serrer soigneusement la vis/le boulon en contact avec la bride du moyeu).
- 4) en dernier lieu, s'assurer que la série de lamelles est bien restée perpendiculaire à l'axe de transmission; si tel n'est pas le cas, serrer à nouveau ou desserrer légèrement quelques vis pour obtenir cette condition.

Sur les accouplements avec espaceur (GTR/D) et avec entretoise (GTR/DBSE), la partie centrale de l'accouplement peut être considérée comme un poids suspendu entre deux ressorts (séries de lamelles) et, en tant que tel, aura une fréquence naturelle qui, excitée, produira des oscillations

8. Degré d'équilibrage en fonction de la taille de l'accouplement (GTR/S - GTR/D)



de l'espaceur ou de l'entretoise jusqu'à provoquer la rupture des lamelles. Pour diminuer la fréquence axiale naturelle, il est conseillé d'augmenter la distance des brides des moyeux à la cote nominale « DBSE » (fig.9) de 1,5-2 mm, mettant ainsi préalablement en traction les série de lamelles et réduisant la possibilité d'oscillation de l'espaceur ou de l'entretoise.

Remarque: Pour les montages en sens vertical, voir l'exécution proposée en page 9.

EXEMPLES DE COMMANDE

