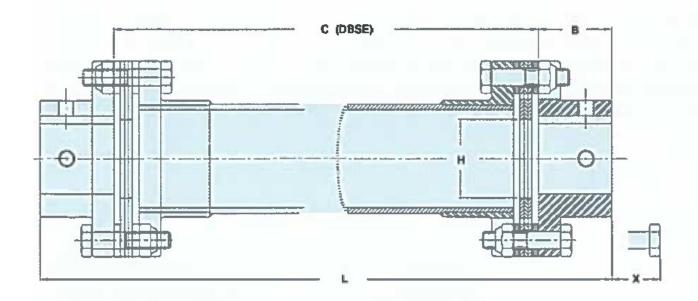
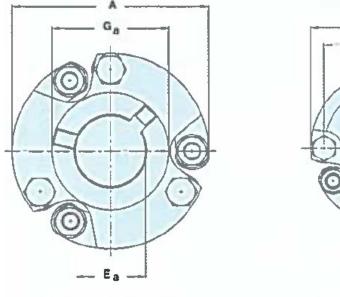
ARBRE FLOTTANT - CARACTÉRISTIQUES TECHNIQUES

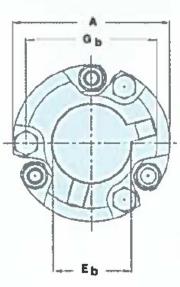
				Rig	idité torsic	naelle	-· ·	* 04	saligneme	ents	Моу	eu A			May	eu B	Моуеи	à bride
	Puissance max.	Couple nominal	8ase	Facteur Z	Facteur Y	Facteur 21	Facteur Y1	Angula ire (note 2)	Parallèle Y1	Axial Y1	Unité de base	Unité de base	facteur	facteur	Poids addit.	Inertie addit.	Polds addit.	Inertie addit.
!	CH/100 Vmla	permanent	à 300 mm DBSE								Poids à 300 mm DBSE	inertie à 300 mm DBSE	de poids par mètre DBSE	d'inertie par mètre OBSE	pour (chaque) maxi- mum	pour (chaque) maxi- mum	pour (chaque) maxi- mum	pour (chaque) maxi- mum
		Nm	Nm/ radian	in tbs:/deg.	in lbs./deg.	Nm radian	Nm radian	degrés	mm/ mètre de DBSE	mm	kg	kg-cm²	kg	kg-cm ⁱ	kg	kg-cm ¹	kg-cm²	kg
6F22	0.43	30.5	3,379	0.052	0.842	0.338	138	3	52	1.5	0.9	2.5	0.97	1.37	0.0	0.2	0.1	0.4
6F26	0.75	54	5,589	0.086	2.09	0.559	344	3	52	1.8	1.5	5.6	1,54	3.40	0.0	0.4	0.2	1.0
6F30	1.27	90	8,157	0.125	2.09	0.816	344	3	52	2.5	1.9	10.1	1.54	3.40	0.1	1.4	0.3	2.3
6F37	2.54	181	24,439	0.375	13.05	2.444	2,146	3	52	3.6	3.8	34.5	3.73	21.2	0.1	3.4	0.5	5.6
6F45	3.97	282	46,963	0.722	25.57	4.696	4,205	3	52	4.1	6.0	82.4	4.54	41.6	0.2	7.9	0.7	12.7
6F52	5.65	402	64,571	0.992	35.72	6.457	5,874	3	52	4.6	9.5	179	5.22	58.2	0.2	15.8	0.9	21.2
6F60	10.08	718	102,533	1.575	53.30	10.253	8,765	3	52	5.1	12.8	320	5.97	86.8	0.07	42.8	0.9	25.5
6F67	16.34	1,164	157,561	2.422	93.98	15.756	15,454	3	52	5.6	18.0	587	7.21	153.0	1.0	75.5	1.0	35.8

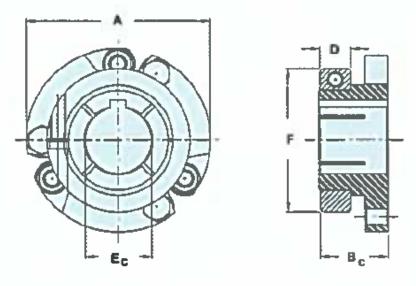

Note: 1) Pour la rigidité torsionnelle (K, in./lb./deg.) d'unités de longueur supérieure à 300 mm, utiliser la formule suivante, où L=(DBSE-12) : K = ((Z x Y) / ((L x Z) + Y)) x 10⁴.

Pour la rigidité torsionnelle (K, in./lb./radian) d'unités de longueur supérieure à 300 mm, utiliser la formule suivante, où L=(DBSE-300): $K=((Z1 \times Y1) / ((L \times Z1) + Y1)) \times 10^4$.


Note: 2) Voir page 22 concernant la sélection d'accouplements et la capacité de désalignement.

Note: 3) Pour le poids et l'inertie d'unités de longueur supérieure à 12", soustraire 300 mm de DBSE (dimension C) et multiplier par les facteurs de poids/inertie mentionnés ci-dessus. Le couple maximum est égal à deux fois le couple nominal permanent.


ARBRE FLOTTANT - CARACTÉRISTIQUES DIMENSIONNELLES



Moyeu de type A

Moyeu de type B

Moyeu à noix de serrage

						Alésage max.								
	A	8	Bc	D max.		Ea	Eb	Ec	Ec	Ga	Gb	H	X	C min.
		Moyeux		Moyeu	Moyeu	Moyeu	Moyeu	Moyeu	Moyeu	Moyeu	Moyeu		:	(DBSE)
		AetB	C	C	C	A	В	C	C	A	В			
								av. rat.	ss rat.					
		mm	वाव	mm	शंस्त	mm	mm	mm	mm	mm	mm	נתוח	mm	साम
6F22	57.2	23.8	25.4	12.7	47.6	16	26	19	24	31.0	47.6	23.1	13.0	75.8
6F26	65.8	27.0	27.0	14.2	57.2	19	32	24	28	38.1	54.8	25.4	9,9	88.5
6F30	76.2	31.8	31.8	17.5	66.7	25	35	28	35	43.4	63.5	30-7	9.9	99.6
6F37	95.3	36.5	36.5	19.1	82.6	32	46	38	48	55.6	79.4	38.4	17,3	137.7
6F45	114.3	42.9	42.9	19.1	88.9	42	60	42	50	68.3	95.3	46.0	23.1	175.6
6F52	133.4	49.2	49.2	22.2	108.0	48	66	55	65	84.1	111,1	53.3	18.5	201-1
6F60	152.4	61.9	61.9	22.2	120.7	60	76	60	75	93.2	127.0	61.5	17,5	226.3
6F67	171.5	69.9	69,9	22.2	133.4	66	85	70	85	109.0	142.9	69.1	10.4	262.7

La dimension L est égale à (2 x B) + C (C est la distance DBSE ou portée)

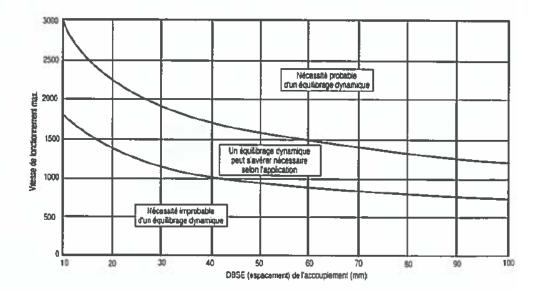
La dimension C est toujours fabriquée selon les exigences de l'application

La dimension "X" est la course de boulon minimale nécessaire au-delà du moyeu

pour pouvoir désassembler l'ensemble de disques des moyeux.

ARBRE FLOTTANT - PORTÉE MAXIMALE C

Le tableau ci-dessous montre les longueurs et les vitesses, pour lesquelles les accouplements d'arbre flottant standard peuvent être utilisés en évitant les fréquences naturelles. Les accouplements correspondant aux valeurs, ou proches des valeurs indiquées dans le tableau, peuvent nécessiter un équilibrage dynamique. Voir ci-dessous pour les informations d'équilibrage. Si votre application se situe en dehors de ces paramètres, prière de nous consulter. Une construction spéciale de l'ensemble de disques ou de l'arbre flottant peut augmenter les vitesses et/ou les longueurs maximales. Reportez-vous aux informations de désalignement des accouplements ci-dessous.


	2250	2000	1750	1500	1250	1000	900	750	650	500
	Umla	t/min	Vmin	t/min	Umin	t/min	t/min	t/min	Umin	1/min
6F22	1193	1265	1352	1461	1600	1789	1886	2066	2219	2530
6F26	1332	1413	1511	1632	1787	1998	2107	2308	2479	2826
6F30	1332	1413	1511	1632	1787	1998	2107	2308	2479	2826
6F37	1295	1709	1915	2068	2266	2533	2670	2925	3142	3582
6F45	1511	2012	2157	2330	2553	2854	3008	3295	3540	4036
6F52	655	983	1463	2202	2681	2997	3159	3461	3718	4239
6F60	843	1245	1824	2616	2866	3204	3377	3700	3974	4531
6F67	826	1252	1877	2840	3150	3522	3713	4067	4369	4981

DIRECTIVES D'ÉQUILIBRAGE DYNAMIQUE POUR LES ACCOUPLEMENTS D'ARBRE FLOTTANT CD

Les tolérances serrées utilisées pour la fabrication des accouplements CD, conjointement avec l'ensemble de disques en matériau composite, rendent les accouplements à arbre flottant CD particulièrement appropriés pour les applications à grande vitesse et espacements.

Parfois, l'application peut nécessiter un équilibrage dynamique de l'accouplement d'arbre flottant. Voir le graphique pour les directives générales d'application. Vitesse de fonctionnement max.

DÉSALIGNEMENT DE L'ACCOUPLEMENT

En général, la possibilité de désalignement d'accouplements à arbre flottant CD est liée à la vitesse à laquelle l'arbre flottant tourne, ainsi qu'à sa masse, qui est définie par son diamètre et sa longueur. La table ci-contre montre le désalignement angulaire maximal admissible recommandé.

En réduisant le désalignement admissible (et par conséquent les contraintes dans les disques) à des vitesses de fonctionnement élevées et des distances DBSE longues, l'ensemble de disques peut mieux supporter et stabiliser l'arbre flottant, ce qui se traduit par un allongement de la durée de vie de l'accouplement, un fonctionnement plus régulier et une diminution des vibrations transmises à l'équipement connecté. Veuillez nous téléphoner pour toute assistance.

DBSE (DISTANCE "C")

	< 760 mm	entre 760 et 1525 mm	> 1525 mm
< 500 t/min	3*	2.5*	2°
entre 500 et 1000 Vmin	2.5*	2*	1.5°
entre 1000 et 1500 t/mln	2*	1.5*	18:
> 1500 t/min	1*	0.75°	0.50*