

'MU' (Mk 2) Series Disc Brake Caliper

MU-2 Brake Caliper

Caliper with Tension Spring Part No. 6780918. Weight (caliper only)- 0.750 kg (1.65 lb)

Parts List

	Component	Part No.	Qty.
_1	Arm (Thruster Side)	6640177	1
2	Arm (Opposite Side)	6640178	1
3	Pivot Post	8240039	1
4	Pad Retaining Spring	2400093	2
5	9/16" Plain Washer	4700209	1

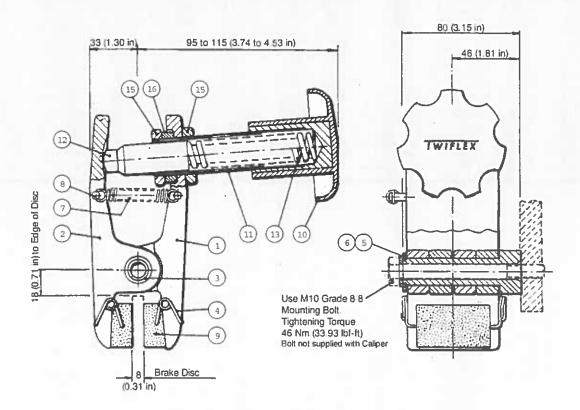
Item	Component	Part No.	Qty.
6	M10 Plain Washer	4700208	1
7	Tension Spring	2400109	1
8	Grooved Pin	3100088	2
9	Brake Pad	7080047	2

General Description

The 'MU' series of disc brake calipers is the smallest in the TwiEex range and is designed for light duty stopping and holding applications.

The range consists of three spring applied, air released brake calipers type MUS2, MUS3 and MUS4; one handwheel adjustable spring applied, brake caliper type MUH; one air applied, spring released disc brake caliper type MU3 and one direct air applied brake caliper type MUP.

This range of brakes is normally used with 8mm (0.31 in) thick discs having a minimum dia. of 150mm (5.91 in), (these are not available from the standard Twi Ex range), but the MUS3 caliper will accommodate discs up to 11 mm (0.43 in) thick. With a revised thruster mounting arrangement (see page 3) the MUS3 and MU3 calipers can be used with standard Twi Ex discs 12.7mm (0.50 in) thick.


The MUS2 disc brake caliper, the smallest in the spring applied series, has a spring loaded piston type thruster The MUS3 disc brake caliper, the next in the series, is intended mainly for light holding duties (or for very occasional stopping applications). It has a diaphragm type thruster. No adjustment for brake pad wear is provided.

The MUS4 caliper is similar to the US3 but has a heavier spring. This brake is used for normal stopping and holding duties.

Both the MUS2 and MUS4 calipers have an adjusting screw in the push rod which allows the braking force to be maintained, provided regular adjustments are made to compensate for brake pad wear. The maximum air pressure to be used with these calipers is 7 bar (102 psi).

Disc Brake Caliper: Type MUH - Hand Operated, Spring Applied

Handwheel Adjustable

Disc Brake Caliper Assembly Type MUH

Parts List

Item	Component	Part No.	Qty.
1	Arm (Thruster Side)	6640177	1
2	Arm (Opposite Side)	6640178	1
3	Pivot Post	8240039	1
4	Pad Retaining Spring	2400093	2
5	9/16" Plain Washer	4700209	1
6	M10 Plain Washer	4700208	1
7	Tension Spring	2400109	2
8	Grooved Pin	3100088	2

Item	Сотролепt	Part No.	Qty.
9	Brake Pad	7080047	2
10	Hand Knob	7900637	1
11	Sleeve	7950388	1
12	Push Rod	7952012	11
13	Spring	2500109	1
14			
_15	3/4" BSP Nut	5100051	2
16	Spacer	1650494	1

Technical Data MUH:

Hand Knob Assembly only Part No. 7800173.

CaJiper only Part No. 6780918.

Complete assembly (Caliper and hand knob assembly) Part No. 6780925.

Weight (complete assembly) -1.150kg (2.54 lb)

Minimum brake disc diameter- 150mm (5.91 in)

Disc thickness (Standard) - 8mm (0.31 in)

New pad dimensions - 30x50x21mm (1.18x1.97x0.83 in) thick

Brake pad wear allowance - 2mm (0.08 in) each pad maximum

Total pad area - 30cm² (4.65 in²)

Braking Force 560 N (125 lbf) at coefficient of friction μ = 0.38 Brake torque (Nm) = Braking force (N) x effective disc radius (m). (Effective disc radius (m) = actual radius (m)- 0.020).